Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.260
Filtrar
1.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474680

RESUMO

Many important biological species have been identified as cancer biomarkers and are gradually becoming reliable targets for early diagnosis and late therapeutic evaluation of cancer. However, accurate quantitative detection of cancer biomarkers remains challenging due to the complexity of biological systems and the diversity of cancer development. Fluorescent probes have been extensively utilized for identifying biological substances due to their notable benefits of being non-invasive, quickly responsive, highly sensitive and selective, allowing real-time visualization, and easily modifiable. This review critiques fluorescent probes used for detecting and imaging cancer biomarkers over the last five years. Focuses are made on the design strategies of small-molecule and nano-sized fluorescent probes, the construction methods of fluorescence sensing and imaging platforms, and their further applications in detection of multiple biomarkers, including enzymes, reactive oxygen species, reactive sulfur species, and microenvironments. This review aims to guide the design and development of excellent cancer diagnostic fluorescent probes, and promote the broad application of fluorescence analysis in early cancer diagnosis.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Biomarcadores Tumorais , Espécies Reativas de Oxigênio/análise , Fluorescência , Microambiente Tumoral
2.
J Hazard Mater ; 469: 133823, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442598

RESUMO

Environmentally persistent free radicals (EPFRs) are emerging pollutants stabilized on or inside particles. Although the toxicity of EPFR-containing particles has been confirmed, the conclusions are always ambiguous because of the presence of various compositions. A clear dose-response relationship was always challenged by the fact that the concentrations of these coexisted components simultaneously changed with EPFR concentrations. Without these solid dose-response pieces of evidence, we could not confidently conclude the toxicity of EPFRs and the description of potential EPFR risks. In this study, we established a particle system with a fixed catechol concentration but different reaction times to obtain particles with different EPFR concentrations. Caenorhabditis elegans (C. elegans) in response to different EPFR concentrations was systematically investigated at multiple biological levels, including behavior observations and biochemical and transcriptome analyses. Our results showed that exposure to EPFRs disrupted the development and locomotion of C. elegans. EPFRs cause concentration-dependent neurotoxicity and oxidative damage to C. elegans, which could be attributed to reactive oxygen species (ROS) promoted by EPFRs. Furthermore, the expression of key genes related to neurons was downregulated, whereas antioxidative genes were upregulated. Overall, our results confirmed the toxicity from EPFRs and EPFR concentration as a rational parameter to describe the extent of toxicity.


Assuntos
Caenorhabditis elegans , Material Particulado , Animais , Caenorhabditis elegans/genética , Material Particulado/análise , Radicais Livres/química , Estresse Oxidativo , Espécies Reativas de Oxigênio/análise
3.
Environ Res ; 248: 118283, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253190

RESUMO

Atmospheric fine particulate matter (PM2.5) enters the human body through respiration and poses a threat to human health. This is not only dependent on its mass concentration in the atmosphere, but also related to seasonal variations in its chemical components, which makes it important to study the cytotoxicity of PM2.5 in different seasons. Traditional immersion exposure cannot simulate the living environment of human epithelial cells in the human body, making this method unsuitable for evaluating the inhalation toxicity of PM2.5. In this study, a novel air-liquid interface (ALI) particulate matter exposure device (VITROCELL Cloud 12 system) was used to evaluate the toxic effects and potential mechanisms of human lung epithelial cells (A549) after exposure to seasonal PM2.5. PM2.5 samples from four seasons were collected and analyzed for chemical components. After 6 h of exposure to seasonal PM2.5, winter PM2.5 exhibited the highest cytotoxicity among most toxicity indicators, especially apoptosis rate, reactive oxygen species (ROS), inflammatory responses and DNA damage (γ-H2AX). The effect of autumn PM2.5 on apoptosis rate was significantly higher than that in spring, and there was no significant difference in other toxicity indicators between spring and autumn. The cytotoxicity of summer PM2.5 was the lowest among the four seasons. It should be noted that even exposure to low doses of summer PM2.5 leads to significant DNA damage in A459 cells. Correlation analysis results showed that water-soluble ions, metallic elements, and polycyclic aromatic hydrocarbons (PAHs) were associated with most toxicological endpoints. Inhibitors of oxidative stress and endoplasmic reticulum (ER) stress significantly inhibited cellular damage, indicating that PM2.5-induced cytotoxicity may be related to the generation of ROS and ER stress. In addition, PM2.5 can induce ER stress through oxidative stress, which ultimately leads to apoptosis.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/toxicidade , Estações do Ano , Células A549 , Espécies Reativas de Oxigênio/análise , Material Particulado/análise , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , China
4.
Chemistry ; 30(5): e202302916, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37902438

RESUMO

Blood continually contributes to the maintenance of homeostasis of the body and contains information regarding the health state of an individual. However, current hematological analyses predominantly rely on a limited number of CD markers and morphological analysis. In this work, differentially sensitive fluorescent compounds based on TCF scaffolds are introduced that are designed for fluorescent phenotyping of blood. Depending on their structures, TCF compounds displayed varied responses to reactive oxygen species, biothiols, redox-related biomolecules, and hemoglobin, which are the primary influential factors within blood. Contrary to conventional CD marker-based analysis, this unbiased fluorescent phenotyping method produces diverse fingerprints of the health state. Precise discrimination of blood samples from 37 mice was demonstrated based on their developmental stages, ranging from 10 to 19 weeks of age. Additionally, this fluorescent phenotyping method enabled the differentiation between drugs with distinct targets, serving as a simple yet potent tool for pharmacological analysis to understand the mode of action of various drugs.


Assuntos
Envelhecimento , Corantes Fluorescentes , Camundongos , Animais , Corantes Fluorescentes/química , Espécies Reativas de Oxigênio/análise , Oxirredução , Células Sanguíneas/química
5.
Environ Pollut ; 341: 122858, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967708

RESUMO

Particulate matter (PM) is a group of atmospheric pollutants with an uncertain toxicity, particularly when collected near highways. This study examined the oxidative potential (OP) of, as well as the environmentally persistent free radicals (EPFRs) and reactive oxygen species (ROS) present in PM samples collected near highways in Xiamen, China. Our findings revealed that PM had a relatively high OP, ranging from 3.8 to 18.5 nmol/min/µg, surpassing values reported in previous research. The oxidative potential of the water-insoluble fraction (OPWIS), which accounted for 68% of the total oxidative potential (OPTotal), demonstrated rapid toxicity, whereas the oxidative potential of the water-soluble fraction (OPWS) displayed a steadier toxicity release pattern. The primary free radicals detected in PM were oxygen-centered. The measured concentration of EPFRs was 6.073 × 1014 spins/m3, which is lower than that reported in previous studies, possibly because of the high relative humidity of the road environment in Xiamen. We also investigated the interaction between PM and water near highways and observed the generation of R and OH radicals. Additionally, we analysed the sample composition and evaluated the contributions of the different components to OPTotal. Transition metals (Fe, Cu, and Zn) were identified as the major contributors, accounting for 33.2% of the OPTotal. The positive correlation observed between EPFRs and ROS suggests that EPFRs may be involved in ROS generation. The correlation analysis indicated that the oxidative potential measured using the DTT method (OPDTT) could serve as an indicator of ROS generation. Finally, based on the relationship between OPDTT, EPFRs, and ROS, we propose that reducing the emission of transition metals, particularly Fe, represents an effective control measure for mitigating PM toxicity near highways.


Assuntos
Poluentes Atmosféricos , Elementos de Transição , Espécies Reativas de Oxigênio/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Radicais Livres/análise , Material Particulado/toxicidade , Material Particulado/análise , Elementos de Transição/análise , Estresse Oxidativo , Água/análise
6.
Sci Total Environ ; 912: 169226, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101627

RESUMO

Recent screening surveys have shown the presence of unknown source halogenated organic compounds (HOCs) in shale gas wastewater. However, their occurrence, profile, transport in surrounding surface water and environmental risk potentials remain unclear. Here, a method for the extraction and quantitative determination of 13 HOCs in water by solid phase extraction combined with gas chromatography-mass spectrometry (GC-MS) was established. All of the targeted HOCs were detected and peaked at the outfall, while these contaminants were generally not detected in samples upstream of the outfall, suggesting that these contaminants originated from the discharge of shale gas wastewater; this was further supported by the fact that these pollutants were generally detected in downstream samples, with a tendency for pollutant concentrations to decrease progressively with increasing distance from the outfall. However,different HOCs had different transport potential in water. In addition, the toxicological effects of typical HOCs were evaluated using HepG2 as a model cell. The results indicated that diiodoalkanes suppressed HepG2 cell proliferation and induced ROS generation in a concentration-dependent manner. Mechanistic studies showed that diiodoalkanes induced apoptosis in HepG2 cells via the ROS-mediated mitochondrial pathway, decreasing mitochondrial membrane potential and increasing intercellular ATP and Ca2+ levels. On the other hand, RT-qPCR and Western blot assays revealed that the SLC7A11/GPX4 signaling pathway and HO-1 regulation of ferritin autophagy-dependent degradation (HO-1/FTL) pathway were involved in the ferroptosis pathway induced by diiodoalkane in HepG2 cells. Our study not only elucidates the contamination profiles and transport of HOCs in surface water of typical shale gas extraction areas in China, but also reveals the toxicity mechanism of typical diiodoalkane.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Gás Natural/análise , Espécies Reativas de Oxigênio/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Compostos Orgânicos , Água/análise , China
7.
Chem Res Toxicol ; 36(12): 1930-1937, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38032319

RESUMO

Aftermarket pods designed to operate with prevalent electronic nicotine delivery system (ENDS) products such as JUUL are marketed as low-cost alternatives that allow the use of banned flavored liquids. Subtle differences in the design or construction of aftermarket pods may intrinsically modify the performance of the ENDS device and the resulting nicotine and toxicant emissions relative to the original equipment manufacturer's product. In this study, we examined the electrical output of a JUUL battery and the aerosol emissions when four different brands of aftermarket pods filled with an analytical-grade mixture of propylene glycol, glycerol, and nicotine were attached to it and puffed by machine. The aerosol emissions examined included total particulate matter (TPM), nicotine, carbonyl compounds (CCs), and reactive oxygen species (ROS). We also compared the puff-resolved power and TPM outputs of JUUL and aftermarket pods. We found that all aftermarket pods drew significantly greater electrical power from the JUUL battery during puffing and had different electrical resistances and resistivity. In addition, unlike the case with the original pods, we found that with the aftermarket pods, the power provided by the battery did not vary greatly with flow rate or puff number, suggesting impairment of the temperature control circuitry of the JUUL device when used with the aftermarket pods. The greater power output with the aftermarket pods resulted in up to three times greater aerosol and nicotine output than the original product. ROS and CC emissions varied widely across brands. These results highlight that the use of aftermarket pods can greatly modify the performance and emissions of ENDS. Consumers and public health authorities should be made aware of the potential increase in the level of toxicant exposure when aftermarket pods are employed.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Nicotina , Espécies Reativas de Oxigênio/análise , Propilenoglicol/análise , Aerossóis , Material Particulado , Vaping/efeitos adversos
8.
Environ Int ; 180: 108240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37797479

RESUMO

Atmospheric particulate matter (PM) poses great adverse effects through the production of reactive oxygen species (ROS). Various components in PM are acknowledged to induce ROS formation, while the interactions among chemicals remain to be elucidated. Here, we systematically investigate the influence of Brown carbon (BrC) surrogates (e.g., imidazoles, nitrocatechols and humic acid) on hydroxyl radical (OH) generation from transition metals (TMs) in simulated lung fluid. Present results show that BrC has an antagonism (interaction factor: 20-90 %) with Cu2+ in OH generation upon the interaction with glutathione, in which the concentrations of BrC and TMs influence the extent of antagonism. Rapid OH generation in glutathione is observed for Fe2+, while OH formation is very little for Fe3+. The compositions of antioxidants (e.g., glutathione, ascorbate, urate), resembling the upper and lower respiratory tract, respond differently to BrC and TMs (Cu2+, Fe2+ and Fe3+) in OH generation and the degree of antagonism. The complexation equilibrium constants and site numbers between Cu2+ and humic acid were further analyzed using fluorescence quenching experiments. Possible complexation products among TMs, 4-nitrocatechol and glutathione were also identified using quadropule-time-of-flight mass spectrometry. The results suggest atmospheric BrC widely participate in complexation with TMs which influence OH formation in the human lung fluid, and complexation should be considered in evaluating ROS formation mediated by ambient PM.


Assuntos
Poluentes Atmosféricos , Radical Hidroxila , Humanos , Radical Hidroxila/análise , Radical Hidroxila/química , Espécies Reativas de Oxigênio/análise , Substâncias Húmicas/análise , Material Particulado/análise , Pulmão/química , Glutationa , Carbono/análise , Poluentes Atmosféricos/análise
9.
Molecules ; 28(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836733

RESUMO

Oxidative stress is a well-known phenomenon arising from physiological and nonphysiological factors, defined by the balance between antioxidants and pro-oxidants. While the presence and uptake of antioxidants are crucial, the pro-oxidant effects have not received sufficient research attention. Several methods for assessing pro-oxidant activity, utilizing various mechanisms, have been published. In this paper, we introduce a methodology for the simultaneous determination of antioxidant and pro-oxidant activity on a single microplate in situ, assuming that the FRAP method can measure both antioxidant and pro-oxidant activity due to the generation of pro-oxidant Fe2+ ions in the Fenton reaction. Systematic research using this rapid screening method may help to distinguish between compounds with dominant antioxidant efficacy and those with dominant pro-oxidant effects. Our preliminary study has revealed a dominant pro-oxidant effect for compounds with a higher number of oxygen heteroatoms, especially sp2 hybridized compounds (such as those containing keto groups), such as flavonoids and plant extracts rich in these structural types. Conversely, catechins, carotenoids, and surprisingly, extracts from birch leaves and chestnut leaves have demonstrated dominant antioxidant activity over pro-oxidant. These initial findings have sparked significant interest in the systematic evaluation of a more extensive collection of compounds and plant extracts using the developed method.


Assuntos
Antioxidantes , Extratos Vegetais , Antioxidantes/química , Espécies Reativas de Oxigênio/análise , Extratos Vegetais/química , Estresse Oxidativo , Plantas , Folhas de Planta/química
10.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580171

RESUMO

AIMS: To provide an alternative to ultra violet light and vapourized hydrogen peroxide to enhance decontamination of surfaces as part of the response to the COVID-19 pandemic. METHODS AND RESULTS: We developed an indirect method for in situ delivery of cold plasma and evaluated the anti-viral activity of plasma-activated mist (PAM) using bacteriophages phi6, MS2, and phiX174, surrogates for SARS-CoV-2. Exposure to ambient air atmospheric pressure derived PAM caused a 1.71 log10 PFU ml-1 reduction in phi6 titer within 5 min and a 7.4 log10 PFU ml-1 reduction after 10 min when the the PAM source was at 5 and 10 cm. With MS2 and phiX174, a 3.1 and 1.26 log10 PFU ml-1 reduction was achieved, respectively, after 30 min. The rate of killing was increased with longer exposure times but decreased when the PAM source was further away. Trace amounts of reactive species, hydrogen peroxide and nitrite were produced in the PAM, and the anti-viral activity was probably attributable to these and their secondary reactive species. CONCLUSIONS: PAM exhibits virucidal activity against surrogate viruses for COVID-19, which is time and distance from the plasma source dependent.


Assuntos
Bacteriófagos , Desinfecção , Peróxido de Hidrogênio , Nitritos , Gases em Plasma , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/fisiologia , COVID-19/virologia , Desinfetantes/química , Desinfecção/métodos , Peróxido de Hidrogênio/farmacologia , Nitritos/farmacologia , Gases em Plasma/farmacologia , Espécies Reativas de Nitrogênio/análise , Espécies Reativas de Oxigênio/análise , SARS-CoV-2/fisiologia , Água/química , Microbiologia do Ar
11.
J Toxicol Environ Health A ; 86(20): 735-757, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37485994

RESUMO

Welding fumes contain harmful metals and gas by-products associated with development of lung dysfunction, asthma, bronchitis, and lung cancer. Two prominent welding fume particulate metal components are nanosized iron (Fe) and manganese (Mn) which might induce oxidative stress and inflammation resulting in pulmonary injury. Welding fume toxicity may be dependent upon metal nanoparticle (NP) components. To examine toxicity of welding fume NP components, a system was constructed for controlled and continuous NP generation from commercial welding and customized electrodes with varying proportions of Fe and Mn. Aerosols generated consisted of nanosized particles and were compositionally consistent with each electrode. Human alveolar lung A459 epithelial cells were exposed to freshly generated metal NP mixtures at a target concentration of 100 µg/m3 for 6 hr and then harvested for assessment of cytotoxicity, generation of reactive oxygen species (ROS), and alterations in the expression of genes and proteins involved in metal regulation, inflammatory responses, and oxidative stress. Aerosol exposures decreased cell viability and induced increased ROS production. Assessment of gene expression demonstrated variable up-regulation in cellular mechanisms related to metal transport and storage, inflammation, and oxidative stress based upon aerosol composition. Specifically, interleukin-8 (IL-8) demonstrated the most robust changes in both transcriptional and protein levels after exposure. Interleukin-8 has been determined to serve as a primary cytokine mediating inflammatory responses induced by welding fume exposures in alveolar epithelial cells. Overall, this study demonstrated variations in cellular responses to metal NP mixtures suggesting compositional variations in NP content within welding fumes may influence inhalation toxicity.


Assuntos
Ferro , Pulmão , Manganês , Nanopartículas Metálicas , Exposição Ocupacional , Soldagem , Nanopartículas Metálicas/toxicidade , Ferro/toxicidade , Manganês/toxicidade , Humanos , Células A549 , Eletrodos , Espécies Reativas de Oxigênio/análise , Proteínas de Transporte de Cátions/genética , Inflamação/induzido quimicamente , Citocinas/análise , Quimiocinas/análise , Transferrina/análise , Pulmão/patologia
12.
J Hazard Mater ; 459: 132076, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478589

RESUMO

The alleviation of cadmium (Cd) toxicity in Broussonetia papyrifera by arbuscular mycorrhizal (AM) fungi are still not completely elucidated. This study investigated the effects of Rhizophagus irregularis on physiological and biochemical characteristics, and molecular regulation in B. papyrifera under different levels of Cd (0, 30, 90 and 270 mg kg-1 Cd) stress. Results showed that (1) AM symbiosis improved the growth and photosynthesis, enhanced ROS levels as stress signaling and maintained ROS balance under low and medium Cd stress. (2) AM symbiosis regulated AsA-GSH cycle to mitigate ROS overproduction under high Cd stress. (3) AM fungus can chelate more Cd under high Cd stress, increasing soil pH and GRSP content. (4) AM plants can fix or chelate more Cd by P in leaves and reserve more P in stems under high Cd stress. (5) AM symbioses increased root net Cd2+ influx and uptake under medium Cd stress but inhibited under high Cd stress, with upregulation of genes related heavy metals (HMs) transport under medium Cd stress and inhibited the transcription of genes related HMs transport under high Cd stress. Therefore, the alleviation mechanisms of Cd toxicity in B. papyrifera by R. irregularis symbiosis depends on the levels of Cd stress.


Assuntos
Broussonetia , Metais Pesados , Micorrizas , Cádmio/análise , Simbiose , Raízes de Plantas , Espécies Reativas de Oxigênio/análise , Metais Pesados/análise
13.
Environ Res ; 234: 116392, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302739

RESUMO

Air pollution is one of the leading causes of overall mortality globally. Cooking emissions are a major source of fine particulate matter (PM2.5). However, studies on their potential perturbations on the nasal microbiota as well as their association with respiratory health are lacking. This pilot study aims to assess the environmental air quality among occupational cooks and its associations with nasal microbiota and respiratory symptoms. A total of 20 cooks (exposed) and 20 unexposed controls (mainly office workers), were recruited in Singapore from 2019 to 2021. Information on sociodemographic factors, cooking methods, and self-reported respiratory symptoms were collected using a questionnaire. Personal PM2.5 concentrations and reactive oxygen species (ROS) levels were measured using portable sensors and filter samplers. DNA was extracted from nasal swabs and sequenced using 16s sequencing. Alpha-diversity and beta-diversity were calculated, and between-group variation analysis of species was performed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between exposure groups and self-reported respiratory symptoms. Higher daily mean PM2.5 (P = 2 × 10-7) and environmental ROS exposure (P = 3.25 × 10-7) were observed in the exposed group. Alpha diversity of the nasal microbiota between the two groups was not significantly different. However, beta diversity was significantly different (unweighted UniFrac P = 1.11 × 10-5, weighted UniFrac P = 5.42 × 10-6) between the two exposure groups. In addition, certain taxa of bacteria were slightly more abundant in the exposed group compared to unexposed controls. There were no significant associations between the exposure groups and self-reported respiratory symptoms. In summary, the exposed group had higher PM2.5 and ROS exposure levels and altered nasal microbiotas as compared to unexposed controls, though further studies are required to replicate these findings in a larger population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Projetos Piloto , Espécies Reativas de Oxigênio/análise , Exposição Ambiental/análise , Material Particulado/toxicidade , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Gases , Culinária , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise
14.
Sci Total Environ ; 890: 164318, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230338

RESUMO

Plastic microfibers (MF) represent the major source of MF found in the environment, the majority made of polyester (PES). Marine bivalves, suspension feeders widespread in coastal areas subjected to higher anthropogenic input, can accumulate MF from the water column in their tissues. This raised some concern about their possible impact on bivalve health and potential transfer along the food chain. In this work, the effects of PES-MF on the mussel Mytilus galloprovincialis were investigated, utilizing MF obtained by cryo-milling of a fleece cover. Fiber characterization indicated the polymer composition as polyethylene terephthalate (PET); the size distribution was in a length range resembling that of MF released from textile washing, and including those that can be ingested by mussels. MF were first screened for short-term in vitro immune responses in mussel hemocytes. The effects of in vivo exposure (96 h, 10 and 100 µg/L, corresponding to about 150 and 1500 MF/mussel/L, respectively), were then evaluated. Data are presented on hemolymph immune biomarkers (Reactive Oxygen Species and nitric oxide production, lysozyme activity), and on antioxidant biomarkers (catalase and glutathione S-transferase) and histopathology in gills and digestive gland. Tissue MF accumulation was also evaluated. MF exposure stimulated extracellular immune responses both in vitro and in vivo, indicating induction of immune/inflammatory processes. In both tissues, stimulation of antioxidant enzyme activities, suggesting oxidative stress conditions, and histopathological changes were observed, with stronger effects often observed at lower concentration. Although mussel retained a very small fraction of MF, their accumulation was higher in the digestive gland than in gills, and in both tissues of mussels exposed to the lowest concentration. Selective accumulation of shorter MF was also observed, particularly in gills. Overall, the results demonstrate that at environmental exposure levels, PET-MF have a significant impact on mussel physiology, affecting multiple processes in different tissues.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/análise , Plásticos/toxicidade , Plásticos/análise , Espécies Reativas de Oxigênio/análise , Biomarcadores/análise , Poluentes Químicos da Água/análise , Brânquias/química
15.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110846

RESUMO

Globally, breast cancer is the most prevalent form of cancer in women and there is a need for alternative therapies such as plant-derived compounds with low systemic toxicity and selective toxicity to cancer cells. The aim of this study is to assess the cytotoxicity effects of 7-geranyloxycinnamic acid isolated from leaves of Melicope lunu-ankenda, a traditional medicinal plant, on the human breast cancer cell lines. Dried leaf powder was used for the preparation of different crude extracts using different solvents of increasing order of polarity. The structure of the isolated compound from the petroleum ether extract was elucidated by 1H and 13C NMR, LC-MS, and DIP-MS spectroscopy. The cytotoxic activity of the crude extract and 7-geranyloxycinnamic acid analyzed using MTT assay. Apoptotic analysis was evaluated using Annexin V-PI staining, AO/PI staining, intracellular ROS measurement, and measurement of activities of caspases 3/7, 8, and 9. Crude extracts and the isolated pure compound showed significant cytotoxicity against tested cancer cell lines. 7-geranyloxycinnamic acid was found to exert significant cytotoxic effects against breast cancer cell lines such as the MCF-7 and MDA-MB-231 cell lines. The cytotoxic effects are attributed to its ability to induce apoptosis via accumulation of ROS and activation of caspases in both breast cancer cell lines. The pure compound, 7-geranyloxycinnamic acid isolated from the leaves of M. lunu-ankenda, can exert significant cytotoxic effects against breast cancer cell lines without affecting the normal cells.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Neoplasias do Colo , Rutaceae , Humanos , Feminino , Células MCF-7 , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológico , Espécies Reativas de Oxigênio/análise , Rutaceae/química , Folhas de Planta/química , Caspases , Apoptose , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral
16.
J Dairy Sci ; 106(5): 3537-3547, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907758

RESUMO

Newborn calves experience altered redox balance upon transition to extrauterine life. In addition to its nutritional value, colostrum is rich in bioactive factors, including pro- and antioxidants. The objective was to investigate differences in pro- and antioxidants as well as oxidative markers in raw and heat-treated (HT) colostrum and in the blood of calves fed either raw or HT colostrum. Eleven colostrum samples (≥8 L) of Holstein cows were each divided into a raw or HT (60°C, 60 min) portion. Both treatments were stored for <24 h at 4°C and tube-fed in a randomized-paired design at 8.5% of body weight to 22 newborn female Holstein calves within 1 h after birth. Colostrum samples were obtained before feeding, and calf blood samples were taken immediately before feeding (0 h) and at 4, 8, and 24 h after feeding. All samples were analyzed for reactive oxygen and nitrogen species (RONS) and antioxidant potential (AOP), from which the oxidant status index (OSi) was calculated. In 0-, 4-, and 8-h plasma samples, targeted fatty acids (FA) were analyzed using liquid chromatography-mass spectrometry, and oxylipids and isoprostanes (IsoP) using liquid chromatography-tandem mass spectrometry. Results for RONS, AOP, and OSi were analyzed by mixed-effects ANOVA or mixed-effects repeated-measures ANOVA, for colostrum and calf blood samples, respectively, whereas FA, oxylipid, and IsoP were analyzed using false discovery rate-adjusted analysis of paired data. Compared with control, HT colostrum showed lower RONS [least squares means (LSM) 189, 95% confidence interval (95% CI): 159-219 vs. 262, 95% CI: 232-292) relative fluorescence units] and OSi (7.2, 95% CI: 6.0-8.3 vs. 10.0, 95% CI: 8.9-11.1), but AOP remained unchanged (26.7, 95% CI: 24.4-29.0 vs. 26.4, 95% CI: 24.1-28.7 Trolox equivalents/µL). Changes in colostrum oxidative markers due to heat treatment were minor. No changes in RONS, AOP, OSi, or oxidative markers were detected in calf plasma. In both groups of calves, plasma RONS activity declined considerably at all postfeeding time points compared with precolostral values, and AOP reached its maximum 8 to 24 h after feeding. Generally, oxylipid and IsoP plasma abundance reached nadirs at 8 h post-colostrum in both groups. Overall, effects due to heat treatment on redox balance of colostrum and newborn calves and on oxidative biomarkers were minimal. In this study, heat treatment of colostrum reduced RONS activity but did not lead to detectable changes in calf oxidative status overall. This indicates that there were only minor changes in colostral bioactive components that could alter newborn redox balance and markers of oxidative damage.


Assuntos
Colostro , Hipertermia Induzida , Gravidez , Animais , Bovinos , Feminino , Colostro/química , Animais Recém-Nascidos , Temperatura Alta , Hipertermia Induzida/veterinária , Antioxidantes/análise , Oxirredução , Espécies Reativas de Oxigênio/análise
17.
Environ Pollut ; 323: 121275, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780977

RESUMO

The ecological risk of heavy metal-contaminated soil is usually evaluated by its oxidative stress on terrestrial animals, which are vulnerable to the impact of individual differences of animals and environmental conditions. Oxidative potential (OP) is the potential of particles to induce the formation of reactive oxygen species (ROS). In this study, OP of the in situ contaminated soils collected from an industrial site (i.e., 64.5-7783 mg/kg of Cu, 54.9-397 mg/kg of Pb, 278-2085 mg/kg of Zn and 0.615-121 mg/kg of Cd) were measured as 38.0-60.1 pmol/min/mg, and the water extractable Cu, Pb, Zn, and Cd in soils have been proved to contribute 89%-98% to OP. Oxidative stress in earthworms (Eisenia fetida) caused by the industrial contaminated soils can be reflected by the biomarkers such as 8-hydroxy-2'-deoxyguanosine, metallothionein, and antioxidant enzymes, and a negative correlation presents between the comprehensive biomarker response index and the OP of soils (r = -0.979, p < 0.01). This is the first time to propose a dose-response relationship between OP and oxidative stress. Metabolomic analysis also verified that the regulation of four ROS-related metabolites (i.e., l-pipecolate, 1-methylhistidine, 5-methoxytryptamine, and xanthosine) in earthworms treated with contaminated soil were directly correlated with OP values. These results indicate that OP can be used as an indicator for ecological risk assessment of heavy metal-contaminated soil, which provides a fast, stable and easily testable chemical method.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/fisiologia , Cádmio/análise , Solo , Chumbo/análise , Espécies Reativas de Oxigênio/análise , Monitoramento Ambiental , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Estresse Oxidativo
18.
Biometals ; 36(2): 321-337, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35366134

RESUMO

Iron levels in mitochondria are critically important for the normal functioning of the organelle. Abnormal levels of iron and the associated formation of toxic oxygen radicals have been linked to a wide range of diseases and consequently it is important to be able to both monitor and control levels of the mitochondrial labile iron pool. To this end a series of iron chelators which are targeted to mitochondria have been designed. This overview describes the synthesis of some of these molecules and their application in monitoring mitochondrial labile iron pools and in selectively removing excess iron from mitochondria.


Assuntos
Quelantes de Ferro , Sobrecarga de Ferro , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/química , Ferro/química , Mitocôndrias , Espécies Reativas de Oxigênio/análise
19.
J Biochem Mol Toxicol ; 37(3): e23283, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541368

RESUMO

Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.


Assuntos
Citotoxinas , Nanotubos de Carbono , Neurônios , Linhagem Celular Tumoral , Humanos , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio/análise , Citotoxinas/toxicidade , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Sobrevivência Celular/efeitos dos fármacos
20.
Environ Sci Technol ; 57(2): 1039-1048, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580374

RESUMO

Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.


Assuntos
Poluentes Atmosféricos , Espécies Reativas de Oxigênio/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Caspase 3/análise , Material Particulado/análise , Aerossóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...